The Existential Threat To Lead-Acid Batteries

As the battery is discharged, it will have to be recharged. The cycle life durability of a battery defines the stability of the battery through repeated cycles.

Finally, the operating environment of the battery needs to be considered. High or low temperatures, for example, can impact a battery’s performance and safety.

Case Study

Over the next few years, many companies are going to grapple with the decision of whether to transition their applications from lead-acid to more modern battery types. There are several economic considerations, which can be demonstrated with a case study.

Tim Karimov, who is the President at California-based lithium-ion battery supplier OneCharge, has said their customers show “the total cost of ownership for Li-ion averages 20% to 40% lower in just 2 to 4 years.”

Here is how they arrive at that number. While they don’t cite base capacity costs for lithium-ion batteries versus lead-acid batteries, they do note in a presentation that a lead-acid battery can be replaced by a lithium-ion battery with as little as 60% of the same capacity:

Lead-acid to lithium-ion comparison

The reason for this is that the maximum discharge of the lead-acid batteries is 80%, whereas lithium-ion batteries can be discharged to zero. In addition to that, lithium-ion batteries can be charged at various points during the day (breaks, etc.), a practice that would quickly reduce the lifespan of the lead-acid battery.